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0. Introduction 

For a commutative ring R and a positive integer n, let ZeR(xi,. . . ,x,) be the free 

Lie algebra over R generated by xi,. . . ,x,. Let HeR(n) c di”ieR(xl, . ,x,) be the sub- 

module spanned by all bracket monomials containing each xi exactly once. In what 

follows, R will almost always be Z or Z/p for some prime p, and we often suppress 

R from the notation. Whenever we perform explicit calculations, we assume R = Z/p, 

otherwise, R = Z. The submodule Zie(n) is invariant under the obvious action of the 

symmetric group C, on .Z&e(xi, . . ,x,). We consider %e(n) as a representation of Z:,. 

It is well-known that as an R-module 

_%eR(n) z @ R. 
(n-l)! 
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As a ,X,-representation, %e(n) cannot, in general, be described so trivially. It is known 

(see, for instance, [9]) that if R = Cc then 

_!%e(n) E hom(Ind& Y, C[- I]), 

where !P is the representation of Z/n sending the generator to e2n11n and C[- l] is 

the sign representation. However, if the ground ring is Z or Z/p then it is easy to 

check directly that Be(n) is not closely related to any representation induced from 

a one-dimensional representation of Z/n. Following a suggestion of the referee, we 

also remark that if p(n then Pie(n) cannot be projective in characteristic p since 

projectivity in characteristic p would imply freeness over the p-Sylow subgroup of C, 

which cannot happen since the order of the p-Sylow subgroup does not divide (n - l)! 

when p divides n. 

Let nl, . . . , nk be positive integers such that n = n 1 + . . . + nk. Consider the group 

C,, x.. x C,, as a subgroup of C,. The homology groups H, (C,, x . . x C,,; L?ie(n)) 

arise in various contexts in mathematics. In particular, they arise as basic building 

blocks for homology of spaces of unordered configurations of points in manifolds 

and for homology of Lie algebras (see, for instance, [24]). The homology groups 

H, (C,; Be(n)) (with the ground ring Z/p) were computed in [l] (in a certain guise, 

as will be explained below). The main purpose of this paper is to use this computation 

to describe 

H,(C,, x .. . x C,,; Se(n)) 

(with the same ground ring). 

Thus, the main result of this paper is a recursive formula (Theorem 0.2) which 

reduces computation of H, (C,, x . . x C,, ; L?ie(n)) to computation of E7, (Zdd; 

Be(d)) for various values of d. Our methods involve some homotopy theory, namely 

the Hilton-Milnor theorem and Goodwillie’s calculus of functors ([5-71). In fact, we 

do a little more than prove Theorem 0.2 in the sense that rather than prove that 

two graded vector spaces are isomorphic, we prove that two spectra are homotopy- 

equivalent and then obtain the result on vector spaces by passing to homology. We 

use that the nth derivative (in the sense of Goodwillie) of the functor QS 

(loop-suspension) is a spectrum with an action of Z,, whose homology is 

concentrated in one degree, and in this degree it is precisely Yie(n). In more de- 

tail, we consider the Goodwillie tower (the Taylor tower of [7]) of the multi- 

variable functor aS(& V X2 V . V &) and we evaluate its differentials in two 

different ways. The first way is to consider the Goodwillie tower of the fimctor 

QS and evaluate it at XI V X2 V . . V &. The nth layer is given, as a spectrum, 

by the following formula (we denote whz., = W AZ, EC,,, for any space or 

spectrum W): 

Map,(S2K,,, co3 (Sxl V s& V . . V S&)An)hZ,,, 
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where K,, is a complex with an action of C,, that is non-equivariantly homotopy 

equivalent to a wedge of (n - 1 )! copies of the (n - 2)-dimensional sphere, and whose 

only non-trivial reduced homology group satisfies 

This is proved as Fact 2.3 below. K,, is essentially the geometric realization of the poset 

of partitions of the set with n elements (the precise definition is given in Section 2). By 

using the binomial expansion, it should be intuitively clear (to anyone familiar with the 

Goodwillie calculus) that the (nr , . , nk)-differential of the hmctor as(Xt V&V. . ‘V&), 

which is the counterpart of 

Pf nr. +.xk 
&F’ . .ax,“l(“‘..~‘o)n,!. . .nk! 

is given by 

Map,(S2L C”((SX PI A . . A (SA’~)~~~ )hcz,, x .__ xz,, ), 

where the action of C,, x . . . x Z,, on K,, is given by restriction from the action of Z, 

and the action on (SXr )“‘l A. . .A(S&)A”k is the obvious one (this analogy with ordinary 

calculus is addressed in Lemma 1.3 and the explanation following it). The second way 

is to use the Hilton-Milnor theorem. According to this theorem, QS(Xr VxzV. . -VXk) is 

homotopy-equivalent to a weak infinite product ni sZS&, where K are smash products 

of some of the Xjs. Evaluating the (nl, . . . , &)th differential of IT, QSY, and comparing 

the two outcomes yields the following theorem. 

Theorem 0.1. For any connected based spaces Xl,, . . ,Xk, there is an equivalence of 

spectra, which is natural in Xr , . . ,Xk: 

Map,(S2LC”((S& >*‘I A.. . A (~~k)A'""))/(~n~ x...xc,,) 

Map,(S2Kd, Z”(S(X, )Anljd A . -. A (&)Anr’d)Ad)& 

(Here no = gcd(nl,. .,nk) and the dejnition of B(nl/d,. . ,nk/d) is given in Eq. (3) 

below. ) 

Next we take each one of the spaces XI to be a wedge of ij copies of S2m, an even- 

dimensional sphere (m is arbitrary, but it is the same for all j). Thus, for j = 1,. , k we 

take Xj = V:!=, S2m where ij is some positive integer. Passing to homology we obtain 

the following theorem as a corollary. 
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Theorem 0.2. Let no and B(nlld,. ,nk/d) he as in the previous theorem. For any 

ground ring R, and any finitely genercrted free R-modules N1, . . . , Nk 

H,(C,, x . . x c,,; YieR(n) @j, N,‘“’ @R . @R N,f)“” > 

H,(Cd; P’ieR(d) @R (N,@“d @R . . @R N~nk’d)@d) . 

Now take the ground ring to be Z/p for some prime p, and let Nt Z . . ” Nk % R 

(which corresponds to taking all the spaces X, in Theorem 0.1 to be S2m). The groups 

H, (Cd; .%e(d)) have been computed in [I]. In particular, if d is not a power of 

p, then H,(Cd; %e(d)) ” 0. If d = pi for some non-negative integer i, then let us 

denote h/r, = H,(C,, ; Zie( p’)). We will describe A4, explicitly in Section 3. Recall that 

no = gcd(nt , . . . , nk) and let us write no = mp-i where p does not divide m. Then the 

only values of d in Theorem 0.2 that we need to consider are those 

of p. Therefore, 

Here p denotes the number-theoretic Mobius function. Because of the properties of p, 

that are powers 

the only values of e we need to consider in the exponent of the right-hand side are m’ 

and (if j - i>O) m’p where m’(m. We obtain the following theorem 

Theorem 0.3. Let n = nl + . . + nk. Let no = gcd(nr , . . . , nk). Let the ground ring he 

Z/p. Write no = mpj where p does not divide m. Then 

The paper is organized as follows: in Section 1 we present a very brief survey of 

some of Goodwillie’s theory of Taylor towers and state it in the multi-variable form 

that we need. All the material in this section is either quoted from [7] or is adapted 

from there in a straightforward way. In Section 2 we recall various facts from algebraic 

topology that we need. In Section 3, we prove Theorems 0.1 and 0.2 and also describe 

the M;‘s of Theorem 0.3. 
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1. Multivariable calculus 

Let ~2/ denote the category of spaces with a non-degenerate basepoint. We will 

be concerned with calculus of homotopy functors F: %xk + ti!. We begin with an 

overview of the case k = 1, which is the subject of [5-71. According to Goodwillie’s 

calculus, certain functors are analogous to polynomial functions. Namely, a functor is 

analogous to a polynomial of degree II if it is n-excisive in the sense of [6, Definition 

3.11. One of the main theorems of [7] is that if a functor F is p-analytic in the sense 

of [6, Definition 4.21, then there exists a tower of functors {PnF},>o with natural 

transformations . - . + I’,, F -3 P,- 1 F -+ . . . such that P,F is of degree n and there 

exist natural transformations p n : F + P,F which are the unique best approximations 

of F by n-excisive functors in some precise sense. Since [7] has not been published 

yet, we spell out the details of the construction, but not of the proofs. 

Let C(n) denote the category whose objects are subsets of n = { 1,. . _ , n} and whose 

morphisms are inclusions. Let Co(n) denote the full subcategory of C(n) whose ob- 

jects are the non-empty subsets of 12. Let %? be a category. An n-dimensional cubical 

diagram in 59 is a functor C(n) --) %?. A punctured n-dimensional cubical diagram is 

a functor Co(n) + %‘. For our purposes, ‘i will always be any well-behaved version of 

the category of either based spaces or spectra. 

P, involves the infinite iteration of another construction T,. For X E 9 the diagram 

CJ ct X*U, U 2 n + 1 (here * denotes join) determines a strongly co-Cartesian (n + l)- 

cube [6, Definition 2.11 and a map, as in [6, Definition 1.21, 

F(X) + (T,‘F)(X) dz holim {F(X * U) 1 U E Co(n + 1)) 

For i > 1, define the ftmctor T,fF inductively by TiF = T,’ Tjp’F. It is easy to see that 

TLF(X) S holim{F(X * U1 * . . * Uj) ] Ur x . . x r/, E C,(n + 1);) 

and we might as well have taken this to be the definition. We will do this when 

we define the multi-variable analogue of Tj. Clearly, there are natural transformations 

T;F+T,, . ‘+‘F P,F is defined to be the homotopy colimit of the diagram 

F=T,OF+T,‘F+T,+ ..a +T;F+ . . . . 

It is shown in [7] that P,,F is n-excisive and the map pn : F + P,,F is characterized, 

up to weak homotopy equivalence, among natural transformations from F to n-excisive 

functors by the property that p,(X) : F(X) + P,F(X) is ((k - p)(n + 1) - c)-connected, 

where k is the connectivity of X and c is a constant which does not depend on X 

or n, 

According to 171, this tower should be thought of as the Taylor expansion of F 

at the one-point space (but we will subsequently call it the Goodwillie tower of F). 

Thus, P,F is the nth “Taylor polynomial” of F and in particular PoF is a (homotopy) 

constant functor with PoF(X) Y F(;k) for all X. Note also that if F is reduced, i.e 

F(*) 2 *, then TrF(X) 2 QF(SX) and PlF, the linearization of F, is, essentially, 
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QmF(SmX). Let D,F denote the homotopy fiber of the map P,F 4 P,_l F. This is 

a well-defined functor and we call it the nth differential of F. It can be shown that 

D,F is homogeneous of degree n in the sense that it is excisive of degree n and 

P,_lD,,F rz *. Homogeneous functors were classified in [7]: a homogeneous functor 

of degree n is determined, at least up to homotopy, by a spectrum A endowed with an 

action of the symmetric group C, and (up to weak homotopy equivalence) it has the 

form SZ”((A AXA”)kz,). Note the visual resemblance to the formula ax”/n! for the nth 

summand in a Taylor expansion. If D,F(X) E Q”((A A XAn)hz,), then we say that 

the spectrum A, together with the action of C,, is the nth derivative of F. Note also 

that for n = 1 one gets the classical description of a generalized homology theory as 

given by the Brown representability theorem. 

For a general k, we will say that a functor F : Wxk -+ 4?~ is analytic if it is analytic 

considered in each variable separately. For a multi-index n = (nl,. . , nk), we say that 

F is n-excisive if it is ni-excisive considered as a functor of Xi for any choice of fixed 

Xi,. . . ,Ri, . ,xk. We say that F is multilinear if it is reduced and linear (1-excisive) 

in each variable separately. Given a subgroup H of zk we say that F is symmetric 

with respect to H if it extends to a functor F: H 1 a2dxk --t 42. If H = ck, then we 

simply say that F is symmetric. It is shown in [7] that homogeneous one-variable 

functors of degree k are equivalent to symmetric multilinear fimctors of k variables. In 

fact, up to weak homotopy equivalence, a symmetric multilinear functor has the form 

G”O (A A Xi A . . A &), where A is a spectrum with an action of ck. 

By a k-index, or simply a multi-index, when k is clear from the context, we mean 

an ordered k-tuple of non-negative integers. We denote multi-indices with bold letters 

such as i,j,n. Given multi-indices i = (ii,. . . , ik) andj=(ji,...,jk), we say that i<j 

if il<jl for l=l,...,k. For a functor F:“lixk ---f %!!, and multi-indices i = (il, . , ik ) 

and n=(ni,...,nk) we define 

T,fF(X, , . . . ,X,) = holim{F(Xi * r/; * r/: * . * ui;, . . ,& * u; * . . . * u;> 1 

(U: ,..., U,: ,..., lJz> E Co(n, + 1)” x ... x CO(nk + lP}. 

By analogy with the one-variable case, it is clear that if ii 5 iz then there is a canonical 

natural transformation T’I F ----t T,$ F and if also & < i3, then the map T,$ F + T,$ F is the 

composition T,$ F + T:> + T: F. We define P, to be the homotopy direct limit of the 

thus obtained k-dimensional diagram of all T,f. Intuitively, 

Clearly, P,F is n-excisive. Let lj denote the multi-index (0,. , 1,. . ,O) having a 1 

at the j-th place and zeros elsewhere. Just as in the l-variable case there is a map 

P, + P,- 1 induced by restriction of homotopy inverse limits, in the k-variables case 

there are maps P, + P,_l, . Thus, the functors P,,F fit into a “k-dimensional” inverse 

limit system, that converges to F in an appropriate sense. When we speak of P,,F, 

we allow that some of the indices of n are co, in which case we mean that 
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we take the inverse limit with respect to these indices. For example, I’(,,.,,...,,,, = 

holim,,-,&,,,, . . . . . ni). 
In the case of a one-variable functor F, there is an important relation between the nth 

differential of F and the nth cross-effect of F. The connection is explained in [7]. We 

present a brief summary. Given a functor F: oli + %!, the nth cross-effect of F, denoted 

x,,F, is a mnctor of n variables defined as follows: For based spaces Xr , . . . ,X,, we 

define an n-dimensional cubical diagram 9(X, , . ,X,,) by 

with the maps in the cube being the obvious retractions. Then xnF(Xl,. . ,X,) is defined 

to be the iterated homotopy fiber (or the total fiber, as defined in [7, Definitions l.l- 

1.2a]) of 9(X,, . . ,X,). It is easily seen from the definitions that x,,F is symmetric 

and reduced. It follows that P(r, I,.,., lgnF(Xl,. . . ,X,,), the multilinearization of xnF, is 

given, up to homotopy, by 

hocolim Q”‘+“‘+kn~,F(SklX,, . . ,SknX,). 
k, . . . ..k. + cc 

We denote this functor D(“)F. D(“)F is a symmetric multilinear functor, and as such 

is represented by a spectrum with an action of C,; denote this spectrum by A,. The 

following result is proved in [7] 

Lemma 1.1. If A, is as above, then A,, is the nth derivative of F: 

Let F: 4?Lk ho& be a functor of k variables. Let n=(nr,...,nk). We define D,F to 

be the iterated homotopy fiber of the k-dimensional cube given by U H P&l,, where 

1” is defined to be the multi-index which has in its jth place 1 or 0 depending on 

whether j E U or j $! U respectively. D,F is n-homogeneous in the appropriate sense. 

There is a natural (weak) homotopy equivalence 

where A is a spectrum with an action of C,, x C,, x . . . x C,, . We may think of A, 

together with the action, as the nth derivative of F. Again, we would like to establish 

the relation between derivatives and cross-effects. So, given F as before, we may form 

its 111 th cross-effect with respect to the variable Xr, nzth cross-effect in the second 

variable, and so on. One can easily see that the outcome does not depend on the 

order of variables. The outcome is a functor of nr + 4 + . . . + nk variables, which 

is reduced and symmetric with respect to an action of C,, x Zn2 x . x C,, . Upon 

multilinearizing, we obtain a functor which is multilinear and is symmetric with respect 

to C,, x C,, x x C,, . As such, it is represented by a spectrum with an action of 

C,, x .Z,,> x . . . x C,, Denote it by A,,. 

Lemma 1.2. If A,, is as above, then A,, is the (nl,. . . ,nk)th derivative of F. 
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Proof. Very similar to the proof of our Lemma 1 .l as given in [7]. q 

Lemma 1.3. Let F(X,, _. ,Xk) = G(V:=, Xi), u $h ere G is some functor of one vuriuble. 

Let n= (nl,.. .,nk) and let n=nl +‘..+nk. Then the nth derivative of F is equivalent 

to the nth derivative of G with the action of C,, x C,,? x. . ’ x C,, obtained by restriction 

from the action of C,. 

Explanation. Let f(xi,. ,xk) be an analytic function, say, from E@ to [w. Assume, 

furthermore, that f (x1,. ..,xk)=g(xI +“‘+Xk) for some g:R+lR. Then 

Proof of Lemma 1.3. Immediate from Lemmas 1.1 and 1.2. 0 

Lemma 1.4. Let F(X,, . ,Xk) = G(XFml AX:“’ A . IIX~/\~~). Then D,F is trivial 

if ni/mi is not the same for all i = 1. Otherwise, 

D,F(X],...,Xk) z D,G(Xpm’ AX;“: A... r\X,^“l), 

where I = ni/m, 

Explanation. Let f(xi,. ,xk) be an analytic function. Assume, furthermore, that 

f(x1 ,...,xk)=g(xy’ .Xz”‘.‘.X,““) for some g. Then the Taylor series for g evaluated 
at xI”’ .x;2 . ..xk”k IS clearly the multi-variable Taylor expansion of f and it can be 

easily concluded that if nilmi is not a constant non-negative integer independent of i, 

then 

anf x;2’...x P-0 
ax;1 . . .axp(o~...~o)n,!. .nk! - 

and if n,lm, = 1 for all i, then 

anf x;‘...Xp _ 

ax;1 . .ax;~(o’...~o)n,!. . .nk! 

.xmk 1 _$$)(x~’ ‘;! k ) . 

Proof of Lemma 1.4. In fact, we want to show that for any multi-index n, 

P,F(XI,. . . ,Xk) N PC/,,, ,,..., /mi,)F(X,,. . ,Xk) N PIG(X;“’ A Xkm2 A . AX,^“k), 

where I = min{ Lni/mij }. Without loss of generality, we may assume that 1 = [n, /ml]. 

Consider the mnctor P ~,,,oo,...,,)F, which amounts to considering F as a hmctor of 

Xi only, and taking the nrth Taylor polynomial in this variable. P~,,,,,,,.,,~F is nl- 

excisive (inX1) and the map F(X) ,..., xk)+P~,,,~ ,..., ,jF(Xl,..., Xk) is ((nr+l)(dr- 

p) - c)-connected, where dl is the connectivity of Xi and p and c are some numbers, 

which depend on X2,. . . , &, but not on Xi. On the other hand, consider the functor 
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PIG(X;“’ A XFrn2 A . . . A Xk/\““) as a functor of Xi only. It is obvious that it is Zml- 

excisive and therefore ni-excisive, since ni 2 lmi. The natural map 

F(X,,...,Xk)=G(X;m’ /vAY~“~)+P~G(X~~’ /+4X;“‘) 

is 

(I + l)(midi + ... + mkdk - ,O’) - C’ 2 ((I + l)ml)(dl -p’) - C’ 

2 (nl + l)(d, - p’) - c’ 

connected, for some constants p’ and c’. By universality properties of the Taylor ap- 

proximations it follows that there is a weak homotopy equivalence 

4 n,,m ,,_,, ,)F(X ,,..., x,) N P,G(X;“‘AX,~\“%I .4X;““). (1) 

Now consider Pen ,,,_., nl#C It is weakly equivalent to PC,,, z,..,, nip PC,,,, ,..., oa)F. But by 

(l), &,,rX ,..., 03) F is lmi-excisive in the variable Xi for i = 1,2,. . . , k. Since we defined 

1 to be min{ Ln,/miJ}, it follows that Izi 2 lmi, and therefore P(,,,03,...,0C)F is ni-excisive 

in the variable X, for i = 2,. . . , k. Hence, 

q,, ,,,,_, ,,,F(X,, . . . ,&) ” P/G(X;“’ IIX;~’ A . . A\;m”). 

The lemma readily follows. 0 

2. Miscellaneous preliminary results 

Let W be a based space or a spectrum with an action of 1,. Let R be a commutative 

ring. Let k*( -; R) denote reduced homology with coefficients in R. 

Fact 2.1. Suppose that I?*( WV; R) is concentrated in degree i. Then 

fi*(f+‘h,~~;R) g ff+i(Cn;@i(W;R)). 

We will use the following “geometric realization” of Tie(n). Let k,, be the category 

of unordered partitions of n. Thus, the objects of k,, are unordered partitions of PZ, and 

there is a morphism Ai + 12 iff 22 is a refinement of Ai. The category of partitions 

that we define here is the opposite of the category of partitions as defined in [l], 

but it makes no difference since we only are interested in the simplicial nerve of k,,. 

Obviously, k, has an initial and a final object. Denote these 6 and i, respectively. Let 

i, = k,\{6, i}. Let En be the geometric realization of the simplicial nerve of II,. Let 

K,, be the unreduced suspension of K,. Obviously, K,, has an action of C,. Let S” 

denote the n-dimensional sphere. 

Fact 2.2. Non-equivariuntly 

K, N v S-‘. 

(n-l)! 
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In particular, the reduced homology of K, is concentrated in degree n - 2. 

Fact 2.3. As a C,-represerztation, L+(n) E hom(H,_2(K,),Z[- I]). 

Proof. It is known [2, Theorem 12.3, p. 3021 that Be(n) is isomorphic, as a C,- 

representation, to the top homology of F(R2”+ ’ ; n), the space of ordered configura- 

tions of n points in an odd-dimensional Euclidean space (k is arbitrary). Now view 

F(R2k+‘; n) as a C,-equivariant subspace of R(2k+“n and also, by adding a point at 

infinity, of S(2k-t’)n. The top homology group of StZk+‘jn is isomorphic to Z[-l] as a 

C,-representation. Let dnSZk+’ denote the complement of F(Rzk+‘;n) in ,S(2k+‘)“. Let 

Hb denote the bottom reduced homology of A”SZk”. It follows by Alexander duality 

that f!& is in dimension n+2k- 1 and that Be(n) +‘z[z,l hom(&,Z[-11). It remains to 

show that Hb 2 fi,_z(K,) as a C,-representation. It is enough to prove the following 

proposition (the first author is grateful to J. Rognes for explaining it to him). 

Proposition 2.4. There is a C,-equicuriant (weuk) map 

A”S’ --f S’K, 

which, for lurye enough 1, induces un isomorphism on the bottom homology of A”S’. 

The rest of the proof of the fact is occupied by the proof of the proposition. Consider 

the covering of AnS’ by the subspaces I/;,,, 1 5 i < j 5 n, where 

U,,, = {(s, A . AS,) E A”S’ (s, =sJ}. 

The point is that the intersection poset of this covering is isomorphic to the poset 

of unordered partitions of 5 and the intersections in this covering are highly enough 

connected. In more detail, let A = {(il ,,jl ), (i2, j,), . . , (iM, jM)} be a collection of pairs 

1 5 i, <j, 5 n. Let UA = n~i,,~,l~~8~tA U/l,,z3jrI,. We associate with A a graph on n ver- 

tices, labeled 1,. . , n, as follows: There is an edge (i, j) iff (i,j) E A. The connected 

components of this graph determine a partition of n. Clearly, U, depends only on the 

partition associated with A. Thus, the poset associated with the covering of A”S’ by 

Ui,j is isomorphic to k,\i. Let J be the intersection diagram of this covering. Thus, 

J is a functor 

n 
k,,\ 1 ----f Spaces 

given by 

h---f ((~1 /\ . A s,) E A”S’ ( si =s, if i and j are in the same component of A}. 

Thus, A”S’ is the strict direct limit of J. Let d:S’ be the homotopy direct limit of J. 

There is a canonical z:,-equivariant map 

A$ -+ A”,!? 

which is a homotopy equivalence. 
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We now define another functor j: k,,\{ i} + Spaces as follows: 

3. + ($1 A . . . A s,) E d”S’ si = sj if i and j are in the same component of 2, 

~si=O and $!J~~iJ2=l 

i=l 1=I 

Here we think of A”S’ as a subspace of Sn’, which is the one-point compactification of 

IF! The functor j takes values in subspaces of R”! Notice that j(6) = 0 and therefore 

hocolimj Z hocolimjIin. In general, if ;I has k components, then j(A) ” S’k-‘-‘. Let 

4s’ denote the homotopy direct limit of 1 It is easy to see that 

where * denotes join. Next we note that since &S’ is 

a timctor 6, + Spaces and g is homeomorphic to the 

constant functor k,, + *, there is a map 

A&Y’ + K, 

which is N l-connected,’ since the values of J” are all N 

assembles into the following chain of equivariant maps: 

A”S’ 5 A” S’ 2 S’ z+c A-; S’ + S’ * En ? S’ A K,, 
h 

the homotopy direct limit of 

homotopy direct limit of the 

I-connected. All of the above 

The composed map is - 21-connected since the map S’ * 4s’ --) S’ *K, is. It follows 

that the map induces an isomorphism on the bottom homology for 1 large enough. This 

completes the proof. 0 

The space K, plays an important role in calculus of functors. Consider the identity 

functor from based spaces to based spaces. The following is proved in [8] in a slightly 

different form: 

Fact 2.5. 

D, Id(X) = ~23”(Map,(SK,,C”X*“)h~~). 

Proof. As mentioned above, this is a reformulation of the main theorem of [S]. For 

proof of the equivalence with the result in [8], see [l, Section 21. 0 

Corollary 2.6. 

Proof. For any functor F : 42 --) ‘92, consider the functor F’ :X H QF(SX). It follows 

immediately from the universal properties of P, that (P,F’)(X) E O(P,F)(SX) and 
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(&F’)(X) N Q(D,F)(SX). The corollary follows by letting F to be the identity 

ftmctor. 0 

Remark 2.7. It may seem that there is a problem with the definition of K,. In fact, 

there is not. Either by careful checking of the definitions, or by convention, define K1 

to be the empty set. Then SK, should be interpreted as So, provided the suspension is 

unreduced. With these conventions, Fact 2.5 and Corollary 2.6 hold for n = 1. 

3. Proof of the main theorems 

Let Xi,. . . ,Xk be sufficiently nice topological spaces, for example, connected CW- 

complexes with non-degenerate basepoints. By the Hilton-Milnor theorem [lo] there 

is a natural homotopy equivalence 

h: n SzSYi 4 SZS v Xl, (2) 
iEI j=l 

where I denotes the set of basic products on k letters. Essentially, each Y, is a smash 

product of some of the spaces Xl,. , & corresponding to the basic product i. By the 

formula due to Witt [1 1] the number of basic products involving Xj exactly qj times 

is 

(3) 

where qo is the greatest common divisor of the numbers 41,. . ,qk, q = q1 + . . . + qk 

and /_J is the number theoretic Mobius function. 

Let us denote fi(Xr,...,Xk)=QSY; and G(X,,...,Xk)=SZSV:=lXj. Let F be 

JJi,,e. Let n=(nr,..., nk), where nl, , nk are positive integers and let nr + . . + 

Itk = n. The natural transformation h of (2) induces an equivalence 

D,,h : D,,F + D,,G. 

Let I’ denote the set of basic products which involve Xj at most nj times for j = 1,. . , k. 

Clearly, I’ is finite. Let I” = I\I’. Then F = n,,,,, F;f x n,,,,,,, I+. 

The operator D,, commutes, up to homotopy, with finite products of functors. There- 

fore, 

D,,F N D,, n I$ x D,, n &I. 
i’EI’ i”E,” 

Proposition 3.1. 
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Proof. It follows immediately from the definition of 1” and Lemma 1.4 that for any 

i” E I”, D,,l+ E r. The proposition does not follow automatically because in general 

D,, commutes only with finite inverse homotopy limits. However, D,, commutes with 

arbitrary filtered homotopy direct limits, and since the product is a weak product, it 

can be written as a homotopy direct limit of finite products. 0 

On the other hand, I’ is finite, and therefore there is a weak equivalence 

D(n I,..., ni)F = n D(n /,.... ni)F; = D(n j,..., nc)G. (4) 
itl’ 

Evaluating the right-hand side of (4) at (Xl , . . ,Xk ) and using Lemma 1.3, we obtain 

D(n I,..., ,,G(X,,..., xk > = D(n I,..., nn ) 

c ) 

Qs i) x, 

j=l 

= SZ”Map,(S2K,,COC((SX,)An’ A ... A (SXk)*““))h(z,, x...x~,,). (5) 

Similarly, evaluating the middle part of (4) at (Xl,. ,xk) and using Lemma 1.4, we 

obtain 

j-&$ I,_._, nk,F;:(X,,...,Xk)= U&I ,,_.., n,,QsYi 

itI’ iE I’ 

=rI 
(Q”Map,(S2Kd, c==(qx, y’nlid /, . . /, (xk)Ankld)Ad)hZd)B(nIld,...,nkld), 

dIna 

(6) 

where no is the greatest common divisor of the numbers nr , . . . , nk. Comparing (5) and 

(6), and passing from infinite loop spaces to spectra, we obtain Theorem 0.1. 

Let us now take Xj to be a wedge of copies of an even-dimensional sphere S2m for 

every j. Then, using Theorem 0.1, taking homology groups, and applying Facts 2.1 

and 2.3, we obtain Theorem 0.2. 

From here on, we assume that the ground ring is Z/p. It remains to describe the Mi’s 

of Theorem 0.3. We have indicated in the introduction that the A4i’s were computed 

in [I]. To be more precise, the homology groups of the spectrum 

Map,(S2&, Cm(S(2mn’d)t’)Ad)h~d 

with Z/p coefficients have been computed in [l]. In particular, if d is not a power of 

p, then 

H,(Map,(S2&, C~(S(2m”ld)+‘)Ad)h~~; z/p) E 0. 

Assume therefore d = pi for some non-negative integer i. The homology groups of 

Map,(S2&, C~(S(2m”ld)+‘)Ad) hzd are independent of m, up to a dimension shift, and 

we may as well take m = 0. Using Facts 2.1 and 2.3 once more, it is easy to see that 

Mi %’ H,(Map,(S’&, C”OSd)hZ,,; z/p>. 
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Roughly speaking, up to a suitable suspension, M, has a basis consisting of the “com- 

pletely inadmissible” Dyer-Lashof words of length i (which is almost the same as the 

set of admissible Steenrod words of length i). 

Theorem 3.2. Zf d = p’, then the following constitutes a basis for C’+‘Mi: 

if p>2 

{/j”‘Qsl . . ~/3”Qszu~s’> l,s~>p.@+‘-~~+lVl <j<i}, 

ifp=2 

{Q" ...QsguIsi 2 1, sj>2s’+’ ‘~‘1 <j<i}. 

Here u is of dimension 1, Q’JS are the Dyer-La&of operations and /Is are the ho- 

mology Bocksteins [2]. Thus QS increases dimension by s if p = 2 and by 2s(p - 1) 

if p > 2 and p decreases dimension by one. 
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